3t^2+24t+1=0

Simple and best practice solution for 3t^2+24t+1=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3t^2+24t+1=0 equation:


Simplifying
3t2 + 24t + 1 = 0

Reorder the terms:
1 + 24t + 3t2 = 0

Solving
1 + 24t + 3t2 = 0

Solving for variable 't'.

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
0.3333333333 + 8t + t2 = 0

Move the constant term to the right:

Add '-0.3333333333' to each side of the equation.
0.3333333333 + 8t + -0.3333333333 + t2 = 0 + -0.3333333333

Reorder the terms:
0.3333333333 + -0.3333333333 + 8t + t2 = 0 + -0.3333333333

Combine like terms: 0.3333333333 + -0.3333333333 = 0.0000000000
0.0000000000 + 8t + t2 = 0 + -0.3333333333
8t + t2 = 0 + -0.3333333333

Combine like terms: 0 + -0.3333333333 = -0.3333333333
8t + t2 = -0.3333333333

The t term is 8t.  Take half its coefficient (4).
Square it (16) and add it to both sides.

Add '16' to each side of the equation.
8t + 16 + t2 = -0.3333333333 + 16

Reorder the terms:
16 + 8t + t2 = -0.3333333333 + 16

Combine like terms: -0.3333333333 + 16 = 15.6666666667
16 + 8t + t2 = 15.6666666667

Factor a perfect square on the left side:
(t + 4)(t + 4) = 15.6666666667

Calculate the square root of the right side: 3.958114029

Break this problem into two subproblems by setting 
(t + 4) equal to 3.958114029 and -3.958114029.

Subproblem 1

t + 4 = 3.958114029 Simplifying t + 4 = 3.958114029 Reorder the terms: 4 + t = 3.958114029 Solving 4 + t = 3.958114029 Solving for variable 't'. Move all terms containing t to the left, all other terms to the right. Add '-4' to each side of the equation. 4 + -4 + t = 3.958114029 + -4 Combine like terms: 4 + -4 = 0 0 + t = 3.958114029 + -4 t = 3.958114029 + -4 Combine like terms: 3.958114029 + -4 = -0.041885971 t = -0.041885971 Simplifying t = -0.041885971

Subproblem 2

t + 4 = -3.958114029 Simplifying t + 4 = -3.958114029 Reorder the terms: 4 + t = -3.958114029 Solving 4 + t = -3.958114029 Solving for variable 't'. Move all terms containing t to the left, all other terms to the right. Add '-4' to each side of the equation. 4 + -4 + t = -3.958114029 + -4 Combine like terms: 4 + -4 = 0 0 + t = -3.958114029 + -4 t = -3.958114029 + -4 Combine like terms: -3.958114029 + -4 = -7.958114029 t = -7.958114029 Simplifying t = -7.958114029

Solution

The solution to the problem is based on the solutions from the subproblems. t = {-0.041885971, -7.958114029}

See similar equations:

| -8(-12x-37)=-472 | | 5(x-3)-(x-1)=2 | | (3b-1)= | | 0=50+.5x | | =50+.5(0) | | 3x^2=-8x-5 | | -16=8(x-3) | | (5x-6)= | | .1x-.6x-6=19 | | 6+3x=10+x | | 2h+10=12 | | 7+x=8-2x | | 1+4x-7x=-20 | | n+4/7=1/5 | | 3x^3-23x^2+37x+15=0 | | 2t+17=t-3 | | 23-2a=3(a-4) | | x+(x-6)=x+10 | | 2(5-7x)=-102 | | (c+11)(c+11)= | | 2x+8=3x-43 | | 1-3(x+5)=-8 | | =50+.5x | | -x-(13+4x)=-3(5-9x+2) | | (b-8)(b-9)= | | 5k+16=6 | | 5x-(3x+8)=4 | | x-2=5x-15 | | (a-7)(a+2)= | | 3(t-1)+2t=4 | | x-.15x=23.80 | | x/7-3=4 |

Equations solver categories